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Why state-of-the-art is not yet 
state-of-the-practice?

● SE wants efficient push-button verification solutions
● Not everything is implemented in Java / C / Matlab
● Not everything is described in a domain-specific verifiable language

● Need to write a funky model in process algebra?
● Forget it, let's just stick to testing and static analysis.

● UML is the lingua franca for describing systems
● Intuitive, visual, lots of CASE tools, automated test/code generation
● Not officially formalized!
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Sequence Diagrams (UML2.x) 

alternatives

loop

parallelism

break



  

Combined Fragments [ref]



  

For a broad domain of OO software  

systems, Sequence Diagrams give 

the most precise description of the behavior, 

the closest one to code implementation.



  

Goal: a full round-trip approach, 

supported by a toolset. 

Ideally, model checking should be hidden 

from the UML designer!



  

  Target formalism: mCRL2
● actions: atomic steps

● processes: combination (sequential, parallel) of 
actions …

● Communication between processes (exchange of 
data) via action synchronization ...

● if-then-else constructs … 

● nondeterministic choices … 

● means to describe custom data structures ...
(also:integers,reals,enumerations,booleans,lists,sets..)



  

The approach



  

The rationale: treating objects as 
sequential processes

Time

Objects (lifelines)

"The general UML-to-Promela formalization approach is to map 
objects to processes in Spin (proctypes) that exchange messages..."

"...lines 7 and 8 specify the lifelines using process..."

Execution 
occurrence



  

Objects: sequential or concurrent?

In a concurrent setting, multiple threads of a process could be 
invoking methods on the same object.



  

The rationale: global choices

- managing choices globally

- dealing only with synchronous   
  communication

- not treating all Fragment types

Why should object a need to know 
local decisions of object b ?



  

Goal: preserve the OO view in the 
target model

● An OS level process is essentially a chain of 
method invocations on objects

● Associate an mCRL2 process description with 
each class method
– Each mCRL2 process instance carries information 

about the class, object, and OS process instance to 
which the method behavior belongs

● Trivial to reverse model-checking traces back to 
the UML domain 



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

Validation

● UML specification is semi-formal
– Semantics deduced via partial meta-model views 

& natural language descriptions

– No mathematically-formalized semantics

– We don't have formal correctness proofs to 
support the validity of this transformation

– Simulation on simple building blocks; application 
on a real case study



  

Case Study: DIRAC Executor Framework



  

$ java ­jar UML2mCRL2 exportedModel.uml model.mcrl2 

$ mcrl22lps ­nfbw model.mcrl2 model.lps

$ lps2pbes model.lps model.pbes –formula=formula.mcf

$ pbes2bool model.pbes

[true* .
synch_call(1,ExecutorQueues,_queues,pushTask(JobPath,taskId,false)).
true*.
!(synch_call(1,ExecutorQueues,_queues,popTask([JobPath])))*.
synch_reply(1,ExecutorDispatcher,_eDispatch,
_sendTaskToExecutor_return(OK,0))]false 

● Problem: state-space explosion!
- 50 processes in the model
- >300million states and >600GB of memory

● Workaround: standard monitoring automaton running lock-
step with the model, fires a deadlock action if a violation is 
found



  



  

Conclusions and Future Work

● Goal: bridge the existing gap by providing 
transformation methodology and toolset to verify 
UML models

● Express properties in UML rather than with µ-calculus

[true* .
synch_call(1,ExecutorQueues,_queues,pushTask(JobPath,taskId,false)).
true*.
!(synch_call(1,ExecutorQueues,_queues,popTask([JobPath])))*.
synch_reply(1,ExecutorDispatcher,_eDispatch,
_sendTaskToExecutor_return(OK,0))]false 

remember this?
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